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Growth Stress in SiO2 during Oxidation of SiC Fibers 
R. S. Hay, Air Force Research Laboratory, WPAFB, OH 

 
Abstract 
 
 A method to calculate the three principal growth stresses in SiO2 scales formed during SiC fiber 
oxidation has been developed. The method assumes that during oxidation the initial volume expansion 
at the SiC-SiO2 interface is three-dimensional and equal in all directions, and that subsequent SiO2 shear 
stress relaxation is described by the stress-dependent Eyring viscosity model. Large compressive stresses 
of ~10 GPa in SiO2 adjacent to the SiC-SiO2 interface are relaxed to much lower levels at all 
temperatures.  At 1200° - 1300°C viscous flow of amorphous SiO2 further relaxes stress to negligible 
levels.  At 700° - 900°C, axial and hoop stress at the GPa level persist. Radial stresses only reach values 
greater than 100 MPa at 700° - 900°C for scales thicker than ~0.1 fiber radii. Radial expansion of the 
scale eventually causes hoop stress and later axial stress to become tensile in the outer scale. 
Differences in stress-states developed for crystallized and uncrystallized scales are considered. Some 
tentative calculations for crystalline SiO2 scales are compared with experimental evidence for stress in 
the crystalline SiO2 scales of Hi-NicalonTM-S SiC fibers. Assumptions and limitations of the method are 
discussed, along with implications for fiber strength and oxidation kinetics.   
 

I. Introduction 
 

Passive oxidation of SiC to SiO2 is in most cases controlled by interstitial diffusion of O2 
molecules through the amorphous or crystalline silica scale.1-2 There is a volume expansion of ~2.2× 
during SiC oxidation to SiO2. Constraint of this expansion at the SiC-SiO2 interface generates very large 
stresses. Microstructural evidence for these stresses exists for crystalline scales. Cracks formed in 
crystalline scales during SiC fiber oxidation were attributed to tensile hoop growth stress in the outer 
scale.3-5 These cracks function as short-circuit diffusion pathways for oxidation and render the scale non-
passivating.5-6  Tensile stress in the scale may also contribute to lower strengths during oxidation at high 
temperature.7 Very high dislocation densities in crystalline SiO2 near the SiC-SiO2 interface scales 
suggests that very high shear stresses exist during scale growth near that interface.5 

Oxidation of silicon to SiO2 has a volume expansion similar to that for SiC oxidation. Large effort 
has been devoted to modeling growth stress during silicon oxidation at 700° - 1200°C.8 These studies are 
motivated by the use of SiO2 as a dielectric and a device isolation material in integrated circuits.9-10 
Numerical models using finite element or finite difference methods that are adaptable to a variety of 
silicon substrate geometries in integrated circuits have been developed to model oxidation growth 
stress.8-9, 11-19 Analytical models for flat-plate and cylindrical silicon substrates have also been developed 
that predict differences in the growth stresses for the two geometries. Radial and axial compressive 
growth stress and tensile hoop growth stress are predicted for oxidation of silicon fibers.20-22 For the flat 
plate geometry, only in-plane compressive growth stress is present.  

 The role of growth stress on oxidation mechanisms in silicon has been extensively analyzed and 
discussed.23 Compressive growth stress reduces O2 diffusivity in SiO2,8, 12, 20, 24-25 reducing Si oxidation 
rates.26-28 Externally applied compressive stress has also been shown to decrease the rate of silicon 
oxidation.29 Externally applied tensile stress increases those oxidation rates,29-31 and recently the same 
has been demonstrated for SiC fibers.32 However, growth stress modeling and analysis for SiC oxidation  
is lacking. Extensive characterization and analysis of carbon and SiOC layer formation at the SiC-SiO2 
interface during SiC oxidation has not considered the effects of growth stress.2 Growth stress also 
contributes to the residual stress in SiO2 scales on SiC fibers, which in turn may affect the crystallization 
rates of the scales and the strengths of oxidized fibers.5 

Existing growth stress models for cylindrical silicon substrates assume that the volume 
expansion accompanying oxidation is either dilational (equal expansion in all directions),7 uniaxial (all 
expansion in the radial direction),7, 33-34 or nearly uniaxial but with a small intrinsic axial and hoop strain 
in the SiO2 oxidation product.20, 25 Most models assume stress is two-dimensional and ignore the axial 
stress (σz).21, 25, 33-34 However, silicon wafer bending during oxidation can only be explained by three-
dimensional expansion during oxidation.8, 10 Early cylinder oxidation models assumed Newtonian viscous 
flow.7, 21, 33  Most later models recognize that flow at high stress is non-Newtonian and use the Eyring 
model for stress-dependent viscosity.20, 25, 34  Uniaxial expansion models with Newtonian flow predict 
high tensile hoop stress (σθ) at the SiC-SiO2 interface that decreases towards the SiO2 surface.7, 21, 33  
Models with stress-dependent viscosity predict compressive σθ at the SiC-SiO2 interface that rapidly 
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changes to tension towards the SiO2 surface.20, 34 One model with stress-dependent viscosity considers 
only shear stress and does not attempt to resolve it into principal stresses.25 No models calculate both σz 
and σθ for cylindrical substrates, or consider how the change in σθ from compressive to tensile affects 
shear stress, and how the relaxation of shear stress then separately affects σθ and σz . For structural SiC 
fibers this is an important omission because the σz component of residual stress that may affect fiber 
strength. 
 A method for computation of all three principal growth stresses throughout the thickness of an 
SiO2 scale during oxidation of SiC fibers is presented. The method can be equally well applied to silicon 
fibers or cylinders. The model assumes oxidation volume expansion is three-dimensional (dilatational) 
and that the stresses resulting from constraint of that expansion are relaxed with an Eyring stress-
dependent SiO2 viscosity.35  Growth stress calculations for oxidation of SiC fibers are done from 700° to 
1300°C for amorphous scale thicknesses up to 3 µm.  Some calculations are also done for crystalline 
scales using the very limited data available for cristobalite viscosity.36-38 These calculations are compared 
with microstructural evidence for stress in crystalline scales on Hi-NicalonTM-S SiC fibers that has been 
previously published.5 Possible effects of self stress on O2 diffusion are discussed. The change in 
oxidation growth stress with fiber radii from 3 µm to → ~∞ (flat plate) are examined. Assumptions and 
limitations of the model are discussed. 
 

II. Method 
 

A. General 
 A schematic illustrating the volume expansion and the stresses associated with oxidation, as 
well as the discretization of SiC oxidation into annular SiO2 layers is shown in figure 1. There are two 
sources of stress.  The first is the 2.2× volume expansion from oxidation of SiC to SiO2. This expansion is 
shown in stress-free and constrained states in figure 1. Constraint of that expansion by the underlying 
SiC and overlying SiO2 causes extremely large axial (σz) and hoop (σθ) stress, and much smaller radial (σr) 
stress because σr = 0 at the scale surface and small scale thicknesses relative to fiber radii are usually of 
interest.  σr increases or decreases through the scale thickness, depending on the sign and magnitude of 
σz and σθ. The stresses involved in constraint of the initial volume expansion are far larger than those for 
which linear elasticity theory is valid.8  However, as pointed out previously,25 even at low temperatures 
σz and σθ relax very rapidly from high levels by radial expansion to values appropriate for linear elasticity 
if the Eyring model for the dependence of viscosity on shear stress is used. The second source of stress is 
the circumferential expansion of old scale as it is radially displaced by the formation of new scale (Fig. 1). 
This creates tensile σθ in the older scale and eventually tensile σz by the Poisson effect.    
 A flowchart with the major calculation steps is shown in figure 2.  A detailed description of the 
calculation methods in each step follows. 
 

B. SiC Fiber Oxidation Kinetics 
 Fiber oxidation kinetics do not deviate significantly from those for flat plate geometry until the 
oxidation products for 12 µm diameter fibers are several microns thick,5, 39 so SiO2 thickness [w(t)] (Fig. 
1) is assumed to obey Deal-Grove kinetics for flat plate geometry:5, 40 
 

w(t) =  
1
2

A�1 +
4B(t + ti)

A2
−  1                                                                   [1𝑎] 

ti =
xi2 + Axi

B
                                                                                  [1𝑏] 

 
where ti is a time shift that corrects for the presence of an initial oxide layer xi , B is the parabolic rate 
constant and B/A is the linear rate constant. All growth stress modeling for amorphous SiO2 assumes 
that xi=0, but for crystalline scales it is useful to consider the thickness at which the scale crystallizes as a 
stress-free state with thickness xi. B and A obey the usual Arrhenius relationships: 
 

A =  A0e
−QA
RT                                                                                [2] 
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Fig. 1  Schematic diagrams of oxidation of SiC to SiO2.  Discretization of annular layers is illustrated and 
notated.  Volume expansions and stresses associated with oxidation are indicated. The circumferential 
expansion of an old scale layer as it is pushed outward is also shown. The original SiC surface is shown as 
a blue line, roughly midway through the scale thickness. Original SiC is dark green, the elastically 
constrained SiO2 oxidation product is light red, and the relaxed SiO2 is light green with a purple 
boundary. 

B =  B0e
−QB
RT                                                                                [3] 
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Fig. 2  Flowchart for calculation of principal 
growth stresses during SiC fiber oxidation. 

where T is absolute temperature, R is the gas 
constant, QA and QB are activation energies and Ao 
and Bo are pre-exponential factors.  Recent work finds 
that Ao = 4.7 × 10-4 m, QA = 110 kJ/mol, Bo = 1.2 × 10-8 
m2/s, QB = 248 kJ/mol for Hi-NicalonTM-S SiC fiber 
oxidation.5 The SiO2 oxidation product has 2.2 × the 
volume of the SiC consumed.  The SiC radius [b(t)] 
after oxidation for time t is (Fig. 1): 
 

b(t) =  �w2(Ω2 − Ω) + bo2 −  Ωw                 [4] 
 
where bo is the original fiber radius (6.1 µm for Hi-
NicalonTM-S)5 and Ω is the ratio of SiC molar volume 
(ΩSiC) to SiO2 molar volume (ΩSiO2), sometimes referred 
to as the Pilling-Bedworth ratio:33 
 

Ω =  
ΩSiC
ΩSiO2

=  
12.46 cm3

27.34 cm3 = 0.456               [5] 

 
The outer radius of the SiO2 scale [c(t)] is (Fig. 1): 
 

c(t)=b(t)+w(t)                                 [6] 
 

C. Elastic Growth Stress  
The elastic stresses and strains can be 

determined from a modification of a method used for 
progressively deposited coatings on cylinders.41 This 
method was developed for sequentially deposited 
coatings, where the last coating is at the surface.  
During fiber oxidation the “deposition” sequence is 
reversed; the last oxide increment forms at the SiC-
SiO2 interface.  The SiO2 scale is therefore discretized 
into annular increments, or layers, formed in equal 
units of time, with the oldest layer at the surface.   

The unrelaxed elastic growth stresses are 
calculated by dividing the SiC-SiO2 system into three 
separate volumes – the unoxidized SiC fiber, the 
annular SiO2 added from time t(i -1) to t(i) at the SiC-
SiO2 interface, and the outer (older) SiO2 ring that was 
added from time t(0) to t(i-1) (Fig. 1). The axial, radial, 
and hoop stresses in the SiC fiber at time t(i) are 
designated σz

SiC(i), σr
SiC(i) , and σθ

SiC(i) respectively. 
The axial, radial, and hoop stresses in the two annular SiO2 layers are σz

SiO2(i), σr
SiO2(i) , σθ

SiO2(i) and 
σz

SiO2(i-1), σr
SiO2(i-1) , σθ 

SiO2(i-1), respectively. The increment in SiO2 thickness formed from time t=i-1 to 
t=i is therefore w(i)-w(i-1). The effect of adding the ith SiO2 layer on the principal stresses in the three 
separate volumes can be found from three equations for f, pj, and pis, using a modification of the 
method of Tsui and Clyne that uses strain compatibility equations:41   

 
ESiO2Δε = σz

SiO2(i − 1) − σz
SiO2(i) + υSiO2 �σθ

SiO2(i) − σθ
SiO2(i − 1) + σr

SiO2(i) − σr
SiO2(i − 1)�      [7] 

 
ESiO2Δε = σΘ

SiO2(i − 1) − σθ
SiO2(i) + υSiO2 �σz

SiO2(i) − σz
SiO2(i − 1) + σr

SiO2(i) − σr
SiO2(i − 1)�     [8] 
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 1
ESiO2

�σθ
SiO2(i) − υSiO2�σz

SiO2(i) + σr
SiO2(i)�� =  1

ESiC
�σθ

SiC(i) − υSiC�σzSiC(i) + σrSiC(i)��            [9] 

 
where: 

Δε = �
ΩSiO2
ΩSiC

3
−  1                                                                       [10] 

 

σz 
SiC(i) =

−ESiCf

π�ESiCb2(i) + ESiO2 ��b(i) + w(i) − w(i − 1)�2 − b2(i)��
+ σz 

SiC(i − 1)          [11] 

 
σrSiC(i) = σr 

SiC(i − 1) − pis                                                               [12] 
 

σθ 
SiC(i) = σθ 

SiC(i − 1) − pis                                                               [13] 
 

σz 
SiO2(i) =

−ESiO2f

π �ESiCb(i)2 + ESiO2(�b(i) + w(i)�2 − b(i)2)�
                                  [14] 

 
σr 
SiO2(i) = −pi                                                                          [15] 

 

σθ 
SiO2(i) =

pj�b(i) + w(i)�
w(i) − w(i − 1)                                                          [16] 

 

σz 
SiO2(i − 1) =

f

π ��b(i − 1) + w(i − 1) − w(i)�2 − b2(i − 1)�
                            [17] 

 
σr 
SiO2(i − 1) = 0                                                               [18] 

 

σθ 
SiO2(i − 1) =

2pisb(i − 1)2 − pi ��b(i − 1) + w(i − 1)�2 + b(i − 1)2�

�b(i − 1) + w(i − 1)�2 − b(i − 1)2
                     [19] 

 
where f is the axial force, pis is the pressure across the SiO2-SiC interface, pi is the pressure across the 
interface between the ith and the i-1th SiO2 layers, ESiC and ESiO2 and Young’s modulus of the SiC fiber and 
the SiO2 scale, respectively, and νSiC and νSiO2 are Poison’s ratio for the SiC fiber and the SiO2 scale.    
 Stresses in older layers (j = i-2 to j = 0) are updated with the i-1 stress values in [17 - 19]: 
 

σz 
SiO2(j)  =  σz 

SiO2(j) +  σz 
SiO2(i − 1)                                                      [20] 

 
 σr
SiO2(j)  =  σr 

SiO2(j) +  σr 
SiO2(i − 1)                                                      [21] 

 
σθ 
SiO2(j)  =  σθ 

SiO2(j) +  σθ 
SiO2(i − 1)                                                     [22] 

 
D. Relaxation of Shear Stress 

The relaxation of the elastic stresses for all annular elements (j=1 to i) in time increment Δt=t(i)-
t(i-1) are calculated next. Stress relaxation in the SiC substrate is assumed to be negligible. Deviation 
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from Newtonian viscosity, referred to as glass plasticity, results in lower effective viscosity at high shear 
stress.  The Eyring model for shear stress (𝛕) dependence of glass viscosity (𝛈) is frequently used for 
viscosity:8-9, 11-12, 14, 16, 18-20, 22, 25, 35, 42 

 

η =  ηo  
τ Vc

2kT�

Sinh �τ Vc
2kT� �

=  ηo  
τ τc�

Sinh�τ τc� �
                                              [23] 

where the activation volume for plasticity in SiO2, 𝐕𝐜, decreases with temperature, and has been 
inferred to have values ranging between 1.2 ×10-28 m3 to 3 × 10-28 m3.12, 20, 25  The parameter k is 
Boltzmann’s constant, τc is the critical shear stress above which plasticity is significant (typically ~ 150 
MPa), and ηo is the stress-fee viscosity described by:43-44 

ηo =  Co e
Q
RT ,  C0 = 3.8 ×  10−13 &  Q = 712,000 kJ/mol                                 [24] 

from 1000°C to 1400°C. Unfortunately this relationship lacks experimental validation below 1000°C.43-44 
For silica formed from SiC oxidation, carbon in the SiO2 scale may cause viscosities to be higher than 
those in [24].45 The plasticity activation volume 𝐕𝐜 corresponds to a critical shear stress τc of about 100 
MPa, which is roughly consistent with experiment at 500 to 1400°C.42, 46  Shear stress relaxation with 
time obeys a Maxwell viscoelastic model:12, 25, 47 

dτ(t)
dt

=  −G τ(t)
η(τ)�  , τ[t(i − 1)] = τo t(i − 1)                                    [25] 

where G is the SiO2 shear modulus and the shear stress at the initial time t(i-1) is 𝛕𝐨.  The shear modulus 
(G) of amorphous silica is 34 GPa, with only weak temperature dependence.48 The relaxation of shear 
stress with time (τ(t)) can be determined by substitution of [23-24] in [25] and solving the resulting 
differential equation [25] for τ[t]:  

τ[t] =
4kT
Vc

Coth−1 

⎣
⎢
⎢
⎡ e

Gt
ηo

�Tanh �Vcτo4kT�
2

⎦
⎥
⎥
⎤

=  2τcCoth−1 

⎣
⎢
⎢
⎡ e

Gt
ηo

�Tanh � τo2τc
�
2

⎦
⎥
⎥
⎤
                            [26] 

The initial shear stress τo is determined from the principal stresses for all the separate annular elements 
(j=1 to i) by the usual method: 

τo =
1
2

(σ1(j) −  σ3(j))                                                            [27] 

where σ1(j), σ2(j),  and σ3(j) are the maximum, intermediate, and minimum principal stresses of the jth 
annular element at time t(j) determined from values for σz

SiO2(j), σr
SiO2(j), and σθ

SiO2(j).  
 

E. Determination of Relaxed Principal Stresses from Relaxed Shear Stress 
Calculation of the relaxation of the principal stresses from relaxation of the shear stress τo to τ(t) 

in equation [26] is complicated by the presence of both tensile and compressive principal stresses. It is 
therefore also useful to designate principal stresses by their rank in absolute value as 1σ (j) , 2σ (j), and 
3σ(j), and to define: 

 

    𝛿[σ(j)] =  �   1  σ(j) > 0
−1  σ(j) < 0 

�         [28] 

 
 A boundary condition is σr

SiO2(1) = 0, but σr
SiO2(j>1) will have a small negative value 

(compression) if σz
SiO2(j>1) and σθ

SiO2(j>1) are positive (tension), or a positive value if the other principal 
stresses are negative. Since the scale is free to expand in the radial direction, volume is not conserved, 
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and decomposition of the stress tensor into hydrostatic and deviatoric components, as used for some 
growth stress calculations,13-14 is not useful because the hydrostatic pressure can change with relaxation. 
In almost all cases σr

SiO2(j) will be 3σ (j), but there are some exceptions when σz
SiO2(j) or σθ

SiO2(j) are 
changing from compressive (negative) to tensile (positive) and are therefore 3σ (j) for a relatively short 
period of time.  The different relationships between σ1,2,3(j) and 1,2,3σ(j) are shown in figure 3, and 
require differences in the way new principal stresses [σ(j)’] are calculated after shear stress relaxation.  
Two methods are employed. The first assumes that only 1σ(j) will relax, until it reaches  the value for 
2σ(j), at which point both relax. This method is best suited for high τ where η [23] is not Newtonian, and 
is later referenced as the “High τ Method”. σr

SiO2(j) is a boundary condition unless |σr
SiO2(j)| ≤ |σz

SiO2(j)| 
&|σθ

SiO2(j)|, where the boundary condition becomes 0 for all stresses. For principal stresses of type (1σ1, 
2σ2, 3σ3) or (3σ1, 2σ2, 1σ3): 
 

If 2τ(j) > |2σ(j) – 3σ(j) |:      1σ(j)’  = 3σ(j)  + 2δ[1σ(j)]τ 
2σ(j)’ = 2σ(j)        [29] 
3σ(j)’ = 3σ(j)  

 
If 2τ(j) < |2σ(j) – 3σ(j)| & δ[2σ(j)] = δ[3σ(j)]:   1σ(j)’ = 3σ(j) + 2δ[1σ(j)]τ 

2σ(j)’ = 3σ(j) + 2δ[1σ(j)]τ       [30] 
3σ(j)’ = 3σ(j) 

 
If 2τ(j) < |2σ(j) – 3σ(j)| & δ[2σ(j)] ≠ δ[3σ(j)] & τ(j) > |3σ|:  1σ(j)’ = 3σ(j) + 2δ[1σ(j)]τ 

 2σ(j)’ = 3σ(j) + 2δ[1σ(j)]τ      [31] 
 3σ(j)’ = 3σ(j) 
 

If 2τ(j) < |2σ(j) – 3σ(j)|& δ[2σ(j)] ≠ δ[3σ(j)] & τ(j) < |3σ|:  1σ(j)’ = δ[1σ(j)]τ 
 2σ(j)’ = δ[2σ(j)]τ       [32] 
 3σ(j)’ = δ[3σ(j)]τ 

 
For all other principal stresses: 
 

If τ(j) > |2σ(j)|:      1σ(j)’ = 2σ(j)  + 2δ[1σ(j)]τ 
2σ(j)’ = 2σ(j)        [33] 
3σ(j)’ = 3σ(j)  
 

If |2σ(j)| > τ(j) > |3σ(j)|:     1σ(j)’ = δ[1σ(j)]τ 
 2σ(j)’ = δ[2σ(j)]τ       [34] 
 3σ(j)’ = 3σ(j) 

 
If τ(j) < |3σ(j)|:      1σ(j)’ =  δ[1σ(j)]τ 

 2σ(j)’ = δ[2σ(j)]τ       [35] 
 3σ(j)’ = δ[3σ(j)]τ 

 
This method is consistent with radial expansion at a free surface with minimization of strain energy 
through minimization of 1σ(j)2 + 2σ(j)2 + 3σ(j)2. The relaxed values of 1σ(j)’, 2σ(j)’, and 3σ(j)’ are 
reassigned to σz

SiO2(j), σr
SiO2(j), and σθ

SiO2(j).   
 The second method assumes that viscosity is Newtonian and that the rate of σθ(j)and σz(j) 
relaxation is proportional to their difference with τ(t)/τo and σr(j) , which is a boundary condition and 
does not change, being  zero at the SiO2 surface and near zero elsewhere.  This method is best suited for 
high temperatures and low shear stresses where η is Newtonian, and is later referenced as the “Low τ 
Method”.  𝛔𝛉(j)′ and 𝛔𝐳(j)′ can be determined by solution of: 
 

�
σθ(j)′ 0 0

0 σz(j)′ 0
0 0 σr(j)

�  =  τ(t)
τo
�
σθ(j) − σr(j) 0 0

0 σz(j) − σr(j) 0
0 0 σr(j)

�  + �
σr(j) 0 0

0 σr(j) 0
0 0 σr(j)

�         [36] 
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Fig. 3  The relationships between  
the magnitudes (σi) and absolute 
value magnitudes (iσ) of the 
principal growth stresses that are 
used to calculate principal stress 
relaxation from shear stress 
relaxation in [29] – [35]. 

At very low principal stresses, where |σr
SiO2(j)| ≥ |σz

SiO2(j)| & 
|σθ

SiO2(j)|and they are opposite in sign, |σz
SiO2(j)| and 

|σθ
SiO2(j)|increase, and this method is therefore inconsistent with 

minimization of strain energy.  However, this condition can only 
occur very briefly when σz

SiO2(j) and σθ
SiO2(j) change from 

compressive to tensile from radial displacement of the scale, 
described next.   
 

F. Radial Displacement and Hoop Stress Generation in Scale 
Relaxation expands the SiO2 scale radially. The individual 

radial displacement of the jth layer (𝐮𝐫(𝐣)) is: 
 

ur(j) =  
ΩSiO2

ΩSiC �1 + εzSiO2(j) + εθ
SiO2(j) + εzSiO2(j)εθ

SiO2(j)�
− 1  [37] 

where 
 

εzSiO2(j) =  
1

ESiO2
�σzSiO2(j) −  υSiO2 �σθ

SiO2(j) + σrSiO2(j)��     [38] 

εθ
SiO2(j) =  

1
ESiO2

�σθ
SiO2(j) −  υSiO2 �σz

SiO2(j) + σrSiO2(j)��     [39] 

 
The radial displacement of the jth outer layer is equal to the sum of 
the radial displacements of all the younger layers (i-j-1) beneath it.  
This adds hoop strain (εθ

SiO2) to outer, older layers as they are 
displaced radially outward and forced to a larger circumference 
(Fig.  1). The new hoop strain in each layer can be calculated from 
the sum: 

εθ
SiO2(j) =  εθ

SiO2(j) + � ur(j)
b(j − 1) − b(j)

b(j)

i

j

                                            [40] 

where  

w(i) − w(i − 1) =  � ur

i

i−1

(i)�b(i − 1) − b(i)�                                             [41] 

 
for complete relaxation of the youngest layer.   
 

G. Recalculation of Elastic Stress in the Scale and SiC Fiber after Radial Displacement 
The stress in each SiO2 layer can then be recalculated from the new εθ

SiO2 by solving the three 
strain compatibility equations for the three principal stresses: 
 

εzSiO2(j) =  
1

ESiO2
�σzSiO2(j) −  υSiO2 �σθ

SiO2(j) + σrSiO2(j)��                                   [42] 

εθ
SiO2(j) =  

1
ESiO2

�σθ
SiO2(j) −  υSiO2 �σz

SiO2(j) + σrSiO2(j)��                                   [43] 

εrSiO2(j) =  
1

ESiO2
�σrSiO2(j) −  υSiO2 �σθ

SiO2(j) + σzSiO2(j)��                                   [44] 
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Fig. 4. Hoop stress (σθ) and axial stress (σz) for 
a 1 µm thick scale on a Hi-NicalonTM-S (6 µm 
radius) fiber calculated using the “High τ 
Method” [29-35] and “Low τ Method” [36].  
Differences in calculated values between the 
two methods are small.  Compressive values 
are negative. 

The revised principal stresses in the SiC fiber can then be calculated.  The axial stress σz
SiC is computed 

from the total force exerted by the SiO2 layers which is the sum of the axial stress in each annular SiO2 
element × area of that element: 
 

σzSiC(i) = −�
σzSiO2(j)[2c(i)(w(j) − w(j − 1) + w(j)2 − w(j + 1)2]

b(i)2

i−1

j=1

                      [45] 

 
The revised radial and hoop stress in the SiC fiber can be computed in a similar manner, by computing 
the net pressure (pn) from the sum of the pressures in each annular layer: 
 

σrSiC(i) =  σθ
SiC(i) =  −pn = −  �σθ

SiO2(j)
i−1

j=1

w(j) − w(j − 1)
b(i)

                             [46] 

 
These revised stresses are changed incrementally for strain compatibility and stress relaxation as the 
program loops back to equations [1  -  41] as the next layer i is considered.  For SiC oxidation when w(i) 
<< b(i), the stress in SiO2 is much larger than that in SiC and can be neglected for approximate 
calculations.  
 

III. Results and Discussion 
 

A. General 
 Growth stress calculations were done using equations [1-46] in a MathematicaTM program. 
Calculations were done with 50 to 2000 layers (i = 50 to 2000). Variations in calculations were usually 
insignificant for  i > 100.  A value of i = 500 was chosen as an optimal trade-off between precision and 
calculation speed. 
 Calculations were done for oxidation of Hi-NicalonTM-S SiC fiber for amorphous scales of 10, 100, 
1000, and 3000 nm thickness (w) at 700, 800, 900, 1000, 1100, 1200, and 1300°C. The Deal-Grove 

oxidation kinetics for this fiber have been reported 
for dry air between 700 and 1300°C with Ao = 6.5 × 
10-4 m, Bo = 1.2 × 10-8 m2/s, QA = 111 kJ/mol, and QB = 
249 kJ/mol.5-6  The fiber radius (b0) is 6.1 µm.  The 
molar volumes for SiC (ΩSiC) and amorphous SiO2 
(ΩSiO2) are 27.34 cm3 and 12.46 cm3, respectively.  
The Young’s modulus (E) and Poisson’s ratio (ν) 
values used for SiC and SiO2 were ESiC = 400 GPa, νSiC = 
0.157, ESiO2 = 70 GPa, and νSiO2 = 0.17.  The shear 
modulus value used for silica (G) was 34 GPa. The 
continuous variation in growth stress with change in 
fiber radius was examined by calculations using b0 = 3 
µm and b0 = →∞ (1 km).  
General features for hoop stress (σθ) and axial stress 
(σz) are evident in figure 4 for a 1 µm thick scale on a 
Hi-NicalonTM-S (6 µm radius) fiber. Qualitatively, 
these results are most similar to those of Delph for 
elastic-viscoplastic scales during silicon oxidation.20 
Compressive elastic stress of ~-25 GPa for σθ and σz is 
rapidly relaxed by the Eyring model [23] for SiO2 glass 
viscosity (𝛈) to ~-3 GPa at 700°C and -1 GPa at 
1000°C just 10 nm away from the SiC-SiO2 interface. 
This quickly reduces the problem to one similar to 
unidirectional radial expansion with a residual 
“intrinsic strain” parallel to the SiC-SiO2 interface. 
However, this “intrinsic strain” is T and t dependent, 
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Fig. 5. Radial stress (σr) for a 1 µm thick scale 
on a Hi-NicalonTM-S (6 µm radius) fiber 
calculated using the “High τ Method” [29-35].   

Fig. 6. Shear stress (τ) for a 1 µm thick scale 
on a Hi-NicalonTM-S (6 µm radius) fiber 
calculated using the “High τ Method” [29-35].   

and the calculations done using unidirectional radial expansion show only tensile σθ, with no transition 
from compressive to tensile stress. 20, 25 

At the scale surface, σθ is ~2 GPa (tension) at 700° and 800°C, and σz is ~1 GPa (tension) at 
700°C.  σz is driven towards tensile values by the Poisson effect from radial expansion that creates 

tensile σθ. Viscous stress relaxation reduces all growth 
stresses to < 100 MPa at 1100°C and < 10 MPa at 
1300°C everywhere in the SiO2 scale except the region 
immediately adjacent to the SiC-SiO2 interface.  

Radial stress (σr) calculated by the “High τ 
Method” [29-35] for a 1 µm thick scale on a Hi-
NicalonTM-S (6 µm radius) fiber is shown in figure 5 
and shear stress (τ)is shown in figure 6. Compressive 
σr up to ~100 MPa is present in the center of the scale 
at 700° - 900°C.  This is a consequence of tensile σθ at 
the scale surface. At 700° - 800°C σr goes tensile at 
the SiC-SiO2 interface, which is a consequence of the 
high compressive σθ near that interface.  

τ of ~12 GPa is rapidly relaxed to ~ 2 GPa at 
700°C and 500 MPa at 1100°C just 10 nm away from 
the SiC-SiO2 interface (Fig. 6). It continues to decrease 
as compressive σz and σθ decreases away from the 
SiC-SiO2 interface until σθ becomes tensile, at which 
point τ increases towards the SiO2 surface, reaching 
surface values close to 1.5 GPa at 700°C and 300 MPa 
at 1000°C. The shear stress minimum is ~ 600 nm 
from the SiC-SiO2 interface at 700°C, 200 nm at 
1000°C, and ~50 nm at 1100°C. Note that a 1 µm 
scale takes ~109 s to form at 700°C and ~106 s to form 

at 1000°C, so the latter is of more practical interest. 
The practical use of the growth stress 

calculation method is likely to be limited by 
knowledge of accurate values for amorphous silica 
viscosity. Unlike silicon oxidation, silica scales formed 
during SiC oxidation incorporate carbon.49-52 Network 
carbon in amorphous SiO2 stiffens the network 
structure, making it more viscous and less permeable 
to O2.45, 53-54 However, SiO2 viscosity may be reduced 
by incorporation of the Cl (620 ppm), S (52 ppm), Ca 
(45 ppm), Na (35 ppm), and Fe (27 ppm) impurities in 
Hi-NicalonTM-S fiber.6  

 
B. Comparison of Methods for Calculation of 

Relaxed Principal Stresses 
Two methods for calculation of the relaxed 

principal stresses from the relaxed shear stress were 
developed (equations [29-36]). These methods are 
compared for a 1000 nm thick amorphous SiO2 scale 
on a 6 µm radius Hi-NicalonTM-S fiber at 700° - 1300°C 
in figure 4. The differences between the methods are 
illustrated by the thickness of the colored lines. For σθ 
there is little difference between the two methods. 
The “Low τ Method” [36] finds σθ values slightly lower 

in absolute value than the “High τ Method” [29-35]. In the compressive stress regions of the scale 
(negative values, close to the SiC-SiO2 interface) the calculated values for axial stress (σz) are nearly 
identical. Close to the surface it is higher (more tensile) at 700° and 800°C and lower (less tensile) for 
higher temperatures. At 1100°C and higher, stresses are rapidly relaxed by viscous flow. There is a 2× 
relative difference in calculated values of σz between the two methods, but the absolute difference is 
small because stresses are low (~ 100 MPa) and highly relaxed by viscous flow.  Since high scale stresses 
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Fig. 7. Hoop (σθ) and axial oxidation growth stress (σz) levels as a function of position in the SiO2 scale 
for SiC flat plates and fibers with 6 and 3 µm radius (b0). Results for w = 10 nm, 100 nm, and 1 µm 
thick scales are shown for temperatures of 700°, 800°, 900°, 1000°, 1100°, 1200°, and 1300°C. The 
continuous change in both σθ and σz with the variables of scale position, temperature (T), scale 
thickness (w), and fiber radius (b0) is evident.  

are generally of more interest for structural SiC fibers, further calculations are presented from the “High 
τ Method”.  

 
C. Variation with Scale Thickness and Fiber Radius 

 Calculations for 3 µm radius (b0), 6 µm radius, and a flat plate for 10 nm, 100 nm, and 1 µm thick 
(w) scales at 700 - 1300°C are shown in figure 7. The continuous change of σθ and σz with change in b0 

and w at 700°C to 1300°C throughout the scale is evident. For flat plates of σθ = σz, and stress is always 
compressive. Growth stress for w = 10 nm is very similar to that of a flat plate for b0 = 3 and 6 µm.  
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Fig. 8. Axial stress ( z) at the SiO2 scale surface as a function of scale thickness and oxidation 
temperature for 6 and 3 m radius SiC fibers.  Oxidation time isochrones are also shown.  

Fig. 9. Hoop stress ( ) at the SiO2 scale surface as a function of scale thickness and oxidation 
temperature for 6 and 3 m radius SiC fibers. Oxidation time isochrones are also shown.  

For a 3 m radius fiber, tensile develops at the scale surface at temperatures over 950°C for 
w = 100 nm and reaches values of 400 MPa at 1100°C. Tensile z does not develop until T > 1150°C and 
reaches 100 MPa at 1200°C. For a 6 m radius fiber, tensile stress does not develop at the scale surface 
until temperatures close to 1200°C are reached; maximum tensile and z of 100 MPa forms at 
1200°C. For both b0 = 3 and 6 m with w = 100 nm, z is generally much more compressive than , 
except at the highest temperatures stresses are almost completely relaxed. 

The results for w = 1 m scales with b0 = 6 m were discussed in the previous section. Maximum 
tensile  reaches 2.3 GPa and 3 GPa for b0 = 6 and 3 m, respectively, at 700°C. Maximum tensile z 
reaches 1 GPa (900°C) and 2.2 GPa (800°C) for b0 = 6 and 3 m, respectively. Much larger fractions of the 
scale are under tensile stress for a 1 m thick scale in comparison to a 100 nm thick scale.  

 
D. Surface Stress 

 For structural SiC fibers the residual stress at the scale surface is of great interest. Tensile stress 
promotes formation of cracks that can degrade fiber strength.5-6 Compressive stress may have the 
opposite effect. The stress values at maximum distance from the SiC-SiO2 interface in figure 7 are the 
surface stresses (right hand side of each plot).  Calculations for the hoop stress ( ) and axial stress ( z) 
at the scale surface are mapped as a function of temperature (T) and scale thickness (w) in figures 8-10 
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Fig. 10. Stress ( σθ = σz) at the SiO2 scale surface 
as a function of scale thickness and oxidation 
temperature.    Oxidation time isochrones are 
also shown.  

for flat plates, 6 µm radius fibers, and 3 µm radius fibers. These plots clearly distinguish tensile and 
compressive regions, and also show logarithmic time isochrones in seconds.  

The tensile stress maximum forms at smaller scale thicknesses as temperature increases. This 
maximum is the greatest practical concern for structural SiC fibers. The plots illustrate T-t windows that 
should be avoided.  For example, a tensile σz of ~500 MPa forms for a scale of ~ 600 nm thickness at 
1050°C in 105 seconds (~ 1 day) during oxidation of a 6 µm radius fiber in dry air (Fig. 8). For a 3 µm 
radius fiber this maximum is ~750 MPa. Longer oxidation times would decrease, rather than increase, 
this stress. Much higher tensile stresses are possible at lower temperatures, but require much longer to 
form, and will form for thicker rather than thinner scales. These high tensile stresses may impact fiber 
strength at temperature. They are larger than the compressive thermal stresses that will develop in the 
SiO2 scale during cool down (~300 MPa), and so may impact room temperature strength as well. 

 The maximum tensile σθ that forms at 1050°C is ~600 and 900 MPa for 6 and 3 µm radius fibers, 
respectively (Fig. 9). This stress maximum occurs at a significantly lower scale thickness and shorter time 

than the σz maximum (Fig. 8). Tensile σθ  
stresses have been suggested to cause axial 
cracking of scale during oxidation, rendering the 
scale non-passivating.5-6 Calculations for a flat 
plate, where all stresses are compressive, are 
shown in figure 10 for comparison. 

 
E. Steady-State Tensile Stress 

A near “steady-state” develops for 
tensile stress at T ≥ 1200°C for w = 100 nm for 
both b0 = 3 and 6 µm (Fig. 7).  At lower 
temperatures, greater scale thickness is required 
to reach steady-state. A w > ~1 µm is required 
for T ≥ 1000°C. The tensile σθ and σz values are 
nearly equal, with little change for significant 
distances beneath the scale surface (Fig. 7), but 
the scale thickness (time) required to reach 
steady-state is longer for σz because it is driven 
to tensile values by the Poisson effect from σθ. 
For shear stress τ < τc of 100 MPa [23] where a 
stress–free viscosity (ηo) [24] is applicable, a 
simple expression for the steady-state hoop 
stress [σθ(ss)] can be derived. The rate at which 
scale thickness (δ) is increased from the 

oxidation volume increase is:  
 

dδ
dt

=  
B
w
�

1
Ω
−  1�                                                                         [47] 

 
If σr is negligible, the shear stress is half the hoop stress, and the rate at which hoop strain (εθ) develops 
in the outer scale is: 
 

dεθ
dt

=  
τ
ηo

=  
σϑ(ss)

2ηo
=  

dδ
dt
b

                                                                   [48] 

 
[47] and [48] can be solved for the steady-state hoop stress σθ(ss): 

 

σθ (ss) =  
2B �1

Ω  −  1� ηo
wb

                                                                [49] 
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Fig. 11. The plot for surface stress in Fig. 9 for bo 
= 6 µm, with predictions for the steady-state 
region from [50] superimposed.  

For τ > 100 MPa the stress dependence of viscosity is significant, and [23] must be substituted for ηo, 
giving: 
 

σθ (ss) =  −2τc𝐂𝐬𝐜𝐡 �
bwτcΩ

Bηo(Ω − 1)�
−1

                                                   [50] 

 
Predictions for steady-state σθ tensile stress from 
[50] for a 6 µm radius fiber are shown in figure 11. 
High temperature (> 1150°C) steady-state stress 
value predictions are high, but at lower 
temperatures the prediction is close to calculated 
values. A steady state develops in ~2 minutes at 
1300°C, 3 hours at 1100°C, and in ~100 days at 
900°C. The predictions for σz are the same as those 
for σθ, except the times to reach steady state are 
longer (Fig. 8). For smaller radius fibers the time to 
reach steady-state is also shorter. 

By expanding [49] with the Arrhenius 
expressions for B and ηo, the steady-state tensile 
stress decrease with increasing temperature is 
evident when Q > Qb; the scale viscosity decreases 
faster with an increase in temperature than the 
oxidation rate: 

σθ (ss) =  
2BoCoe

Q−Qb
RT �1

Ω  −  1�
wb

             [51] 

 
This suggests that if materials exist for which Q < 
Qb, a counterintuitive increase in tensile growth 
stress with increase in oxidation temperature is 
expected – the oxidation rate, and growth stress 

generation associated with it, will increase faster than the rate at which viscosity decreases. 
 

F. Crystalline Scale 
SiO2 scale crystallization kinetics have been measured for Hi-NicalonTM-S SiC fiber; crystallization 

begins after ~ 100 hours at 1000°C or 1 hour at 1300°C, when scales are roughly 500 nm and 100 nm 
thick, respectively.5-6 Unfortunately, SiC oxidation kinetics for crystalline scales (cristobalite and 
tridymite) are not well characterized, and there is even less data on creep rates and/or viscosities. 
However, it is clear that the oxidation kinetics for crystalline scales are slower.5-6 Some kinetic data 
suggests that crystalline scale thicknesses are ~1/3 those for amorphous scales.55-56 Temperature 
dependence was not reported, so to a first approximation it is assumed that Bo is an order of magnitude 
smaller (Bo = 1.2 × 10-9 m2/s) and other Deal-Grove parameters are unchanged. Limited data for creep 
rates for cristobalite refractories suggests that at 1550° - 1650°C creep is negligible at very low stress 
(0.2 to 0.6 MPa), but further quantification was not possible.36-38  

To explore the possible effects of crystallization on growth stress, we assume that cristobalite 
viscosity is four orders of magnitude higher than that of amorphous silica at all temperatures: Co = 3.8 × 
10-9 Pa·s [24]. Calculations are done for a 1 µm thick scale at 1100°C, and for cases where crystallization 
occurs when the scale is 100 nm thick, 500 nm thick, and 900 nm thick (Fig. 12). These thicknesses set 
the value for xi in [1]. Crystallization rates are very rapid compared to scale growth rates.5-6 We assume 
that during crystallization all stresses in the amorphous SiO2 are eliminated and are not transferred into 
the crystalline product. Calculations for an SiO2 glass (Fig. 7) are included for comparison.  

At 1100°C, σθ and σz are tensile, < 200 MPa, and in steady-state throughout most of the scale 
(Fig. 12). For early scale crystallization (xi = 100 nm), σθ is 1.6 GPa (tension) at the scale surface, and σz is 
450 MPa (tension). For xi = 500 nm, these values are 700 MPa and 150 MPa, respectively, but a higher 
tensile  σθ of 1.5 GPa is present at x = 500 nm,  with a sharp transition to high  compressive stress  at 
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Fig. 12. Hoop (σθ) and axial growth stress (σz) 
levels after oxidation at 1100°C as a function of 
position in a crystalline SiO2 scale for SiC fibers 
with 6 µm radius (b0). Stress after scale 
crystallization at xi = 100, 500, and 900 nm is 
calculated, as well as glass for comparison. 

the point in the scale at which crystallization 
occurred. For xi = 900 nm the scale has spent a 
relatively short time growing in the crystalline 
state. Surface stresses are compressive, but tensile 
σθ of 700 MPa develops at x = 100 nm. 

As expected, much lower scale viscosities 
cause much higher stresses. Cracks that form 
during oxidation in cristobalite and tridymite 
scales, but not in amorphous scales,5-6 can clearly 
be a consequence of the much higher tensile 
surface stresses (> 1 GPa) that may develop in 
crystalline SiO2 scales. Porosity present in the 
centers of crystalline scales might also be inferred 
to be a consequence of hydrostatic tension that 
develops at the point in the scale at which 
crystallization occurred. Crystalline SiO2 will 
deform by dislocation plasticity at high τ; 
mechanisms implicit in the Eyring model for glass 
no longer apply. There is evidence for intense 
dislocation plasticity in crystalline SiO2 scale near 
the SiC-SiO2 interface.5-6 The 20 nm of SiO2 
adjacent to SiC will have τ > 1 GPa, which is more 
than enough for domination of creep by 
dislocation-based mechanisms.57 
 

G. Effects of Stress on Oxidation Rate 
The retardation of silicon oxidation by 

compressive growth stress and externally applied stress, and the enhancement by externally applied 
tensile stress was briefly mentioned.8, 12, 20, 24-25, 29-31 Some data for oxidation enhancement by tensile 
stress also exists for SiC.32 Recent work on SiC fiber oxidation finds the oxidation rates tend to be higher 
than those observed for bulk SiC.5-6 There was speculation that this could be a SiC substrate geometry 
effect, related to the development of tensile stress in the fiber scale. 

The usual method for handling stress effects on oxidation kinetics is to assume a pressure (p)  
effect on the parabolic rate constant B: 

 

B(p) =  Be
pVd

kT�                                                                     [52] 
 

where Vd is an activation volume, calculated to be 7.5×10-29 m3 for silicon oxidation,12, 20, 25 and pressure 
is: 

p =  
1
3

(σθ +  σz +  σr)                                                               [53] 

 
The pressure clearly varies from high negative values (hydrostatic compression) at the SiC-SiO2 interface 
to lower values at the surface; these can reverse sign be in hydrostatic tension for thick scales at low 
temperatures (Fig. 7).   

A first-order correction for the relative effects of growth stress in flat-pale and cylindrical 
geometries is attempted by calculating the average self-pressure (pav) in the SiO2 scale throughout its 
thickness, as a function of total scale thickness (w), temperature, and fiber radius. This is done by 
summing the pressure – scale volume product for each scale increment and normalizing by the scale 
volume: 

 
p(av) = 1

ci
2−bi

2  ∑ p(bj2 − bj−12 )i
j=1                                                       [54] 

 
The average pressure (pav) was calculated for 6 and 3 µm radius fibers (Fig. 13) as a function of 

total scale thickness from 10 to 3000 nm and temperature from 700° to 1300°C.  Average pressures of 
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Fig. 13. Average SiO2 scale self-pressure (pav) for 6 and 3 µm radius fibers as a function of scale 
thickness (w) and temperature 

Fig. 14. Average SiO2 scale self-pressure (pav) for 
a flat plate as a function of scale thickness (w) 
and temperature 

Fig. 15. The difference in average SiO2 scale 
self-pressure (Δpav) between a flat-plate 
and a 6 µm radius fiber as a function of 
scale thickness (w) and temperature. 

>2.5 GPa (compression) and >300 MPa (tension) were calculated for thin and thick scales, respectively, 
at low temperatures. Scales formed at high temperature do not support significant self-pressures. 

When comparing oxidation rates for bulk and fiber SiC, the difference in self-pressure between 
the two geometries is relevant.  Both geometries have scale pressure.  Calculations for the flat plate 
geometry are shown in figure 14. The difference in average pressure (Δpav) between a flat plate and a 6 
µm radius fiber is shown in figure 15. Fibers with thick scales formed at low temperatures have the 
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greatest Δpav, and should therefore show the greatest enhancement relative to flat-plate oxidation 
kinetics. 
 For previously reported oxidation data for Hi-NicalonTM-S SiC fiber,5-6 the highest Δpav is ~500 
MPa for ~1 µm thick SiO2 scales formed at 1000°C (Fig. 15). By [52], the lower growth stresses (relative 
to flat plates) in fibers oxidized under these conditions would enhance B by ~8.5× in comparison to flat 
plates, increasing scale thickness by ~3×. This is at best only a partial explanation for the relatively high 
SiC oxidation rates for Hi-NicalonTM-S fiber. Most data, particularly that at 700° - 900°C and 1200° - 
1300°C, has much lower Δpav and the effects of growth stress would be insignificant. 

 It is interesting to note that the data of Gauthier et al. for stress dependence of the parabolic 
rate constant for Hi-NicalonTM SiC fiber oxidation at 800°C is consistent with an 8× enhancement at ~500 
MPa.32 However, at higher stresses it is no longer consistent with [52].32 At 1.276 GPa there is a 
measured enhancement of 19×, but [52] predicts enhancement by ~600×. We suggest that this is due to 
stress relaxation is the SiO2 scale by [23], since shear stress is well above τc.  
   

IV. Summary and Conclusions 
 
 A method to calculate the axial, hoop, and radial growth stresses in SiO2 scales for the 2.2× 
volume expansion during SiC fiber oxidation was developed. Axial stresses are usually ignored, but for 
structural fibers they have the largest effect on strength. The method assumes oxidation volume 
expansion is three-dimensional (dilatational) and that the stresses resulting from constraint of that 
expansion are relaxed radially with an Eyring stress-dependent SiO2 viscosity, although other 
appropriate viscosity models can be substituted. The method can be equally well applied to fibers of 
silicon or other materials. High compressive hoop and axial stresses of ~25 GPa are very quickly relaxed 
to much lower values at all temperatures. Stresses relax by radial expansion, which creates tensile hoop 
stress in the outer scale. Tensile hoop stress eventually drives axial stress to a tensile state by the 
Poisson effect. Tensile hoop and axial stress can reach values greater than 2 GPa for long times at 700° 
and 800°C. A continuum in stress response from flat plate geometry to small fiber radius geometry is 
demonstrated. The accuracy of the growth stress calculation method is limited by knowledge of 
accurate values for amorphous silica viscosity, which can be affected by incorporation of carbon or other 
impurities during SiC oxidation.   

Tensile hoop and axial stresses reach steady-state values that can be described by analytical 
expressions. At steady-state, tensile stress relaxation rates are counterbalanced by hoop stress 
generation tied to the radial expansion of scale and the oxidation rate. At temperatures over 1200°C all 
growth stresses are rapidly relaxed by viscous flow to very low values. For Hi-NicalonTM-S SiC fibers, a 
900°-1100°C oxidation temperature – 300 nm - 1 µm scale thickness window may exist where high 
tensile stresses at the scale surface are likely to develop. These may have negative effects on fiber 
mechanical properties. Even higher tensile stresses may develop for thicker scales at lower 
temperatures, but the times required to reach those thicknesses are very long. 

Crystalline SiO2 scales are assumed to have much higher viscosities than amorphous scales, and 
should therefore develop much higher tensile hoop and axial stresses than those scales.  Unfortunately, 
lack of data on cristobalite and tridymite viscosity or creep rates, as well as diffusion rates, prohibits 
accurate quantitative prediction.  However, qualitative predictions of high tensile stress in the outer 
scale and high shear stress near the SiC-SiO2 interface are consistent with microstructure observations in 
crystalline silica scales.  

Sample geometry may affect oxidation rates through the geometric effect on growth stresses. A 
Hi-NicalonTM-S SiC fiber and a flat plate of the same composition are calculated to have up to a ~500 
MPa difference in average SiO2 scale pressure from growth stress in thick scales formed at ~1000°C. This 
could increase scale thickness in the fiber by ~3× over that of the flat plate.  However, the effect is 
smaller at higher and lower temperatures, and is currently only a partial explanation for higher fiber 
oxidation rates.  
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